Angebote zu "Vision" (35 Treffer)

Computer Vision
60,99 € *
ggf. zzgl. Versand

Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of ´´recipes,´´ this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques. Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Anbieter: buecher.de
Stand: 19.09.2019
Zum Angebot
Concise Computer Vision
36,99 € *
ggf. zzgl. Versand

This textbook provides an accessible general introduction to the essential topics in computer vision. Classroom-tested programming exercises and review questions are also supplied at the end of each chapter. Features: provides an introduction to the basic notation and mathematical concepts for describing an image and the key concepts for mapping an image into an ℑ explains the topologic and geometric basics for analysing image regions and distributions of image values and discusses identifying patterns in an ℑ introduces optic flow for representing dense motion and various topics in sparse motion analysis; describes special approaches for image binarization and segmentation of still images or video frames; examines the basic components of a computer vision system; reviews different techniques for vision-based 3D shape reconstruction; includes a discussion of stereo matchers and the phase-congruency model for image features; presents an introduction into classification and learning.

Anbieter: buecher.de
Stand: 19.09.2019
Zum Angebot
Learn Computer Vision Using OpenCV
21,99 € *
ggf. zzgl. Versand

Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples. The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you´ll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision. After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work. What You Will Learn Understand what computer vision is, and its overall application in intelligent automation systems Discover the deep learning techniques required to build computer vision applications Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis Who This Book Is For Those who have a basic understanding of machine learning and Python and are looking to learn computer vision and its applications.

Anbieter: buecher.de
Stand: 19.09.2019
Zum Angebot
Computer Vision: A Modern Approach
51,99 € *
ggf. zzgl. Versand

Appropriate for upper-division undergraduate- and graduate-level courses in computer vision found in departments of Computer Science, Computer Engineering and Electrical Engineering. This textbook provides the most complete treatment of modern computer vision methods by two of the leading authorities in the field. This accessible presentation gives both a general view of the entire computer vision enterprise and also offers sufficient detail for students to be able to build useful applications. Students will learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. Features + Benefits Broad coverageCoverage of a wide range of topics allows customization to fit instructor, student, and course needs. Allows instructors to select the most relevant topics for their students and encourages students to enrich their coursework by reading information on other computer vision topics. Most comprehensive and up-to-date text on computer visionIncludes essential topics that either reflect practical significance or are of theoretical importance. Provides students with the most coherent synthesis of current views and teaches them successful techniques for building applications. Depth of the material accessible to various levels of studentsTopics are discussed in substantial and increasing depth. While the first half of each chapter is accessible to undergraduates, a good grasp of each chapter provides students with a professional level of skill and knowledge. Application surveysDescribe numerous important application areas such as image based rendering and digital libraries. Teaches students about practical use of techniques and helps them gain insight into the demands of applications. Many important algorithms broken down and illustrated in pseudo code. Enables students to build working systems easily as they can understand the construction of the final application. Excellent pedagogy throughout the textIncludes numerous worked examples, exercises, programming assignments, and extensive illustrations. Provides students with ample opportunity to apply the concepts in the text. I IMAGE FORMATION 1 1 Geometric Camera Models 3 1.1 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Pinhole Perspective . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Weak Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Cameras with Lenses . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.4 The Human Eye . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Intrinsic and Extrinsic Parameters . . . . . . . . . . . . . . . . . . . 14 1.2.1 Rigid Transformations and Homogeneous Coordinates . . . . 14 1.2.2 Intrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.3 Extrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.4 Perspective Projection Matrices . . . . . . . . . . . . . . . . . 19 1.2.5 Weak-Perspective Projection Matrices . . . . . . . . . . . . . 20 1.3 Geometric Camera Calibration . . . . . . . . . . . . . . . . . . . . . 22 1.3.1 ALinear Approach to Camera Calibration . . . . . . . . . . . 23 1.3.2 ANonlinear Approach to Camera Calibration . . . . . . . . . 27 1.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Light and Shading 32 2.1 Modelling Pixel Brightness . . . . . . . . . . . . . . . . . . . . . . . 32 2.1.1 Reflection at Surfaces . . . . . . . . . . . . . . . . . . . . . . 33 2.1.2 Sources and Their Effects . . . . . . . . . . . . . . . . . . . . 34 2.1.3 The Lambertian+Specular Model . . . . . . . . . . . . . . . . 36 2.1.4 Area Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2 Inference from Shading . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.1 Radiometric Calibration and High Dynamic Range Images . . 38 2.2.2 The Shape of Specularities . . . . . . . . . . . . . . . . . . . 40 2.2.3 Inferring Lightness and Illumination . . . . . . . . . . . . . . 43 2.2.4 Photometric Stereo: Shape from Multiple Shaded Images . . 46 2.3 Modelling Interreflection . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.1 The Illumination at a Patch Due to an Area Source . . . . . 52 2.3.2 Radiosity and Exitance . . . . . . . . . . . . . . . . . . . . . 54 2.3.3 An Interreflection Model . . . . . . . . . . . . . . . . . . . . . 55 2.3.4 Qualitative Properties of Interreflections . . . . . . . . . . . . 56 2.4 Shape from One Shaded Image

Anbieter: buecher.de
Stand: 20.09.2019
Zum Angebot
Practical Computer Vision with SimpleCV
21,99 € *
ggf. zzgl. Versand

Learn how to build your own computer vision (CV) applications quickly and easily with SimpleCV, an open source framework written in Python. Through examples of real-world applications, this hands-on guide introduces you to basic CV techniques for collecting, processing, and analyzing streaming digital images. You?ll then learn how to apply these methods with SimpleCV, using sample Python code. All you need to get started is a Windows, Mac, or Linux system, and a willingness to put CV to work in a variety of ways. Programming experience is optional. * Capture images from several sources, including webcams, smartphones, and Kinect * Filter image input so your application processes only necessary information * Manipulate images by performing basic arithmetic on pixel values * Use feature detection techniques to focus on interesting parts of an image * Work with several features in a single image, using the NumPy and SciPy Python libraries * Learn about optical flow to identify objects that change between two image frames * Use SimpleCV?s command line and code editor to run examples and test techniques

Anbieter: buecher.de
Stand: 19.09.2019
Zum Angebot
Probabilistic Graphical Models for Computer Vis...
89,99 € *
ggf. zzgl. Versand
Anbieter: buecher.de
Stand: 19.09.2019
Zum Angebot
Grundlagen hypermedialer Lernsysteme
59,95 € *
ggf. zzgl. Versand

Die Bewertung hypermedialer Lernsysteme erfordert einen interdisziplinären Ansatz, der hier die Disziplinen Informatik, Psychologie und Didaktik zusammenführt. Instruktionalismus und Konstruktivismus werden verglichen und ihre Umsetzungen bzw. der Einfluss dieser Ansätze auf die Erstellung von Lernsoftware und der Erfolg resultierender Programme diskutiert. Die Darstellung mündet in einem ´´Plädoyer für die Phantasie´´, das dazu auffordert, Visionen für den zukünftigen Einsatz von Hypermedia-Systemen zu entwickeln, die ihre ganzen Möglichkeiten ausschöpfen. Für die 4. Auflage wurden alle Kapitel überarbeitet und aktualisiert.

Anbieter: buecher.de
Stand: 19.09.2019
Zum Angebot
Deep Learning. Das umfassende Handbuch
80,00 € *
ggf. zzgl. Versand

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-Verfahren Die Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Anbieter: buecher.de
Stand: 19.09.2019
Zum Angebot
Beautiful Data
24,99 € *
ggf. zzgl. Versand

Beautiful Data is both a history of big data and interactivity, and a sophisticated meditation on ideas about vision and cognition in the second half of the twentieth century.

Anbieter: buecher.de
Stand: 19.09.2019
Zum Angebot